Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part II. Two-phase heat transfer coefficient

نویسندگان

  • Sung-Min Kim
  • Issam Mudawar
چکیده

This second part of a two-part study examines the prediction of saturated flow boiling heat transfer in mini/micro-channels. The first part culminated in a technique for determining the dryout incipience quality corresponding to substantial deterioration in the heat transfer coefficient. In this part, a consolidated database for flow boiling in mini/micro-channels is amassed from 31 sources, of which 10,805 data points are designated as pre-dryout. The pre-dryout database consists of 18 working fluids, hydraulic diameters of 0.19–6.5 mm, mass velocities of 19–1608 kg/m s, liquid-only Reynolds numbers of 57– 49,820, qualities of 0–1, and reduced pressures of 0.005–0.69. The pre-dryout database is used to evaluate prior correlations that have been recommended for both macro-channels and mini/micro-channels. A few of these correlations are shown to provide fair overall performance, but their accuracy is compromised against specific portions of the database, especially high pressures and very small diameters. A new generalized correlation is constructed by superpositioning the contributions of nucleate boiling and convective boiling. This correlation is shown to provide very good predictions against the entire pre-dryout database, evidenced by an overall MAE of 20.3%, with 79.9% and 95.5% of the data falling within ±30% and ±50% error bands, respectively. Evenly good predictions are achieved for all working fluids and all ranges of the database parameters. 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part I. Dryout incipience quality

This two-part study concerns the development of a generalized approach to predicting both Nucleate Boiling dominated and Convective Boiling dominated heat transfer in mini/micro-channel flows. Both heat transfer regimes exhibit substantial reduction in the heat transfer coefficient at the location of partial annular liquid film dryout, hence the need to ascertain the occurrence of this importan...

متن کامل

Flow boiling heat transfer in two-phase micro-channel heat sinks––II. Annular two-phase flow model

This paper is Part II of a two-part study devoted to measurement and prediction of the saturated flow boiling heat transfer coefficient in water-cooled micro-channel heat sinks. Part I discussed the experimental findings from the study, and identified unique aspects of flow boiling in micro-channels such as abrupt transition to the annular flow regime near the point of zero thermodynamic equili...

متن کامل

Flow boiling heat transfer in two-phase micro-channel heat sinks––I. Experimental investigation and assessment of correlation methods

This paper is the first of a two-part study concerning measurement and prediction of saturated flow boiling heat transfer in a water-cooled micro-channel heat sink. In this paper, new experimental results are discussed which provide new physical insight into the unique nature of flow boiling in narrow rectangular micro-channels. The micro-channel heat sink contained 21 parallel channels having ...

متن کامل

Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling

This paper is a part of a recent series of studies by the authors to develop universal predictive tools for pressure drop and heat transfer coefficient for mini/micro-channel flows that are capable of tackling fluids with drastically different thermophysical properties and very broad ranges of all geometrical and flow parameters of practical interest. In this study, a new technique is proposed ...

متن کامل

Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II—heat transfer characteristics

This paper is the second of a two-part study concerning two-phase flow and heat transfer characteristics of R134a in a micro-channel heat sink incorporated as an evaporator in a refrigeration cycle. Boiling heat transfer coefficients were measured by controlling heat flux (q00 = 15.9 93.8W/cm) and vapor quality (xe = 0.26 0.87) over a broad range of mass velocity. While prior studies point to e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013